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Abstract

We consider two player electromagnetic evasion-pursuit games where each player

must incorporate significant uncertainty into their design strategies to disguise their

intension and confuse their opponent. In this paper, the evader is allowed to make

dynamic changes to his strategies in response to the dynamic input with uncertainty

from the interrogator. The problem is formulated in two different ways; one is based

on the evolution of the probability density function of the intensity of reflected signal

and leads to a controlled forward Kolmogorov or Fokker-Planck equation. The other

formulation is based on the evolution of expected value of the intensity of reflected

signal and leads to controlled backward Kolmogorov equations. In addition, a number

of numerical results are presented to illustrate the usefulness of the proposed approach

in exploring problems of control in a general dynamic game setting.
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1 Introduction

In an electromagnetic evasion-interrogation game, the evader wishes to minimize the in-
tensity of the reflected signal to remain undetected in carrying out his mission while the
interrogator wishes to maximize the intensity of reflected signal to detect the attacker. It
was demonstrated in [9] that it is possible to design ferroelectric materials with appropri-
ate dielectric permittivity and magnetic permeability to significantly attenuate reflections
of electromagnetic interrogation signals from highly conductive targets such as airfoils and
missiles. These results were further sharpened and illustrated in [10] where a series of differ-
ent material designs were considered to minimize over a given set of input design frequencies
the maximum reflected field from input signals. In addition, it was shown that if the evader
employed a simple counter interrogation design based on a fixed set (assumed known) of
interrogating frequencies, then by a rather simple counter-counter interrogation strategy
(use of an interrogating frequency little more than 10% different from the assumed design
frequencies), the interrogator can easily defeat the evader’s material coatings counter inter-
rogation strategy to obtain strong reflected signals. From the combined results of [9, 10] it
is thus rather easily concluded that the evader and the interrogator must each try to confuse
the other by introducing significant uncertainty in their design and interrogating strategies,
respectively.

Static two-player non-cooperative games with uncertainty were considered in [6]. In these
problems, the evader and the interrogator are each subject to uncertainties as to the actions
of the other. The evader wants to choose a best coating design (i.e., best dielectric permit-
tivities and magnetic permeabilities) while the interrogator wants to choose best angles of
interrogation and interrogating frequencies for input signals. Each player must act in the
presence of incomplete information about the other’s action. Partial information regarding
capabilities and tendencies of the adversary can be embodied in probability distributions for
the choices to be made. That is, one may formalize this by assuming the evader may choose
(with an as yet to be determined set of probabilities) dielectric permittivity and magnetic
permeability parameters from given admissible sets while the interrogator chooses angles of
interrogation and interrogating frequencies from appropriate admissible sets . The formu-
lation in [6] is based on the mixed strategies proposals of von Neumann [2, 30, 31] and the
ideas can be summarized as follows. The evader does not choose a single coating, but rather
has a set of possibilities available for choice. He only chooses the probabilities with which
he will employ the materials on a target. This, in effect, disguises his intentions from his
adversary. By choosing his coatings randomly (according to a best strategy to be determined
in, for example, a minmax game), he prevents adversaries from discovering which coating he
will use–indeed, even he does not know which coating will be chosen for a given target. The
interrogator, in a similar approach, determines best probabilities for choices of frequency
and angle in the interrogating signals. Note that such a formulation tacitly assumes that
the adversarial relationship persists with multiple attempts at evasion and detection.

The problems are mathematically formulated in [6] as two sided optimization problems over
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spaces of probability measures, i.e., minmax games over sets of probability measures. That
work demonstrates the feasibility and the potential usefulness of developing theories for prob-
lems with uncertainty. In this paper, we move toward a more realistic dynamic modeling
by introducing time dynamics into the problem for single evasion attempts. Specifically, we
allow a single evader to make dynamic changes to his dielectric permittivity strategies in
response to feedback entailing measures of the reflection signals based on dynamic informa-
tion with uncertainty about the interrogator’s choices. Thus, this new formulation is more
in the spirit of the deterministic dynamical differential games as formulated, for example, in
[20] except here uncertainties of the two players’ actions are a major feature as in the static
games of [6, 31]. The remainder of this paper is organized as follows. We begin in Section 2
by presenting a description of our problem formulation. We then outline a theoretical and
computational framework in Section 3 that provides a foundation for our solution methods.
A number of computational results are presented in Section 4. We conclude the paper by
some summary remarks and proposed future research efforts in Section 5.

2 Problem Description

In this section, we will use a capital italic letter to denote a random variable unless otherwise
indicated, and use the corresponding small letter to denote its realization.

We formulate a minimization problem with cost functional in terms of some reflection coeffi-
cient dependent on the evader’s dielectric permittivity ǫ as well as the interrogator frequency
ω. This reflection coefficient could be based on a simple planar geometry using Fresnel’s for-
mula for a perfectly conducting half plane which has a coating layer of thickness d with
dielectric permittivity ǫ and interrogating frequency ω as detailed in [6]. This expression can
be derived directly from Maxwell’s equation by considering the ratio of reflected to incident
wave for example in the case of parallel polarized (TEx) incident wave (see [9, 25]).

An alternative and much more computationally intensive approach, which may be necessi-
tated by some target geometries (e.g., missiles), employs the far field pattern for reflected
waves computed directly using Maxwell’s equations. In two dimensions, for a reflecting
body with a given coating layer with an interrogating plane wave E(i), the scattered field
E(s) satisfies the Helmholtz equation [18] as detailed in [6].

Throughout we assume for simplicity that the magnetic permeability for the evader is fixed
as is the angle of incidence of the interrogating signal. We assume that the evader has
the ability to choose the dielectric parameter ǫ he uses in order to thwart detection, and
the parameter ǫ is changed adaptively depending on the frequency w that the interrogator
is using (or rather depending on the reflections produced by the interrogator’s frequency
choices). In addition, we assume that the interrogator frequency process {Wt : t ≥ 0} is an
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Itô diffusion process (Chapter 7 of [29]) satisfying the stochastic differential equation

dWt = µ(Wt)dt+ σ(Wt)dBt, (2.1)

where both µ and σ are non-random functions that are Lipschitz continuous, and Bt denotes
the standard Brownian motion.

Below we will consider two different formulations, one is based on the evolution of the
probability density function of the intensity of reflected signal, and the other is based on the
evolution of expected value of the intensity of reflected signal.

2.1 Evolution of Probability Density Function of Intensity

Let Yt = ϕ(Wt), where ϕ is some chosen measure of intensity of the reflected signal for a
given material dielectric parameter (for example, ϕ can be chosen as the magnitude of the
reflection coefficient). In addition, we assume that ϕ is twice continuously differentiable.
Then by Itô’s formula we find that

dYt =

[

ϕ′(Wt)µ(Wt) +
1

2
ϕ′′(Wt)σ

2(Wt)

]

dt+ ϕ′(Wt)σ(Wt)dBt.

If we further assume that ϕ−1 exists, then we can rewrite the right-hand side of the above
equation in terms of Yt given by

dYt =

[

ϕ′(ϕ−1(Yt))µ(ϕ−1(Yt)) +
1

2
ϕ′′(ϕ−1(Yt))σ

2(ϕ−1(Yt))

]

dt

+ϕ′(ϕ−1(Yt))σ(ϕ−1(Yt))dBt.

If ϕ is chosen such that functions ϕ′(ϕ−1(y))µ(ϕ−1(y)) +
1

2
ϕ′′(ϕ−1(y))σ2(ϕ−1(y)) and

ϕ′(ϕ−1(y))σ(ϕ−1(y)) are both Lipschitz continuous, then {Yt : t ≥ 0} is also an Itô diffusion
process. Let ρ(t, y) denote the probability density function of the random variable Yt. Then
it is well known that ρ satisfies Fokker-Planck equation (e.g., see [23, p. 118])

∂ρ(t, y)

∂t
+

∂

∂y

[(

ϕ′(ϕ−1(y))µ(ϕ−1(y)) +
1

2
ϕ′′(ϕ−1(y))σ2(ϕ−1(y))

)

ρ(t, y)

]

=
1

2

∂2

∂y2

[

(

ϕ′(ϕ−1(y))σ(ϕ−1(y))
)2
ρ(t, y)

]

.

(2.2)

For our illustration here, we choose ϕ to be a first-order approximation of the chosen measure
of intensity of the reflected signal, that is, ϕ(w) = c1w+ c0 (i.e., y = c1w+ c0), where c0 and
c1 are constants. Then (2.2) can be simplified as

∂ρ(t, y)

∂t
+ c1

∂

∂y

[

µ(ϕ−1(y))ρ(t, y)
]

=
1

2
c21
∂2

∂y2

[

σ2(ϕ−1(y))ρ(t, y)
]

. (2.3)
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Let ̺(t, w) = ρ(t, y). Then we have

∂̺

∂t
=
∂ρ

∂t
,

∂

∂y
=

1

c1

∂

∂w
,

∂2

∂y2
=

1

c21

∂2

∂w2
.

Hence, we can rewrite (2.3) in terms of w as follows

∂̺(t, w)

∂t
+

∂

∂w
[µ(w)̺(t, w)] =

1

2

∂2

∂w2

[

σ2(w)̺(t, w)
]

. (2.4)

To allow for evader control of the system (2.4), we introduce some input of the form

−λr(̺(t, w) − u(t, ǫ))

into the system (2.4), that is,

∂̺(t, w)

∂t
+

∂

∂w
[µ(w)̺(t, w)] =

1

2

∂2

∂w2

[

σ2(w)̺(t, w)
]

− λr(̺(t, w) − u(t, ǫ)), (2.5)

where λr is the relaxation constant of the material. We note from (2.5) that once we introduce
feedback controls into this system, ̺ is no longer a probability density function (indeed we
are trying to drive it to zero on most of its support).

Here we consider a generalized control u, which is defined by

u(t, w) =

∫

E

r(w, ǫ)dU(t, ǫ), (2.6)

where r(w, ǫ) is some given real-valued function of the reflection coefficient with given fre-
quency w and dielectric parameter ǫ, and U is a time-dependent distribution of possible
dielectric settings ǫ in E . The motivation for introducing distributional or generalized con-
trols is two fold. First, this is natural when one is extending the static theory of [6] where
the uncertainty in controls is embodied in probability measures on the static control param-
eters such as dielectric permittivities and interrogating frequencies. A second compelling
motivation is prompted by a rich literature on closure theorems in the calculus of variations
and optimal control associated with distinguished contributors such as Young [37, 38], Mc-
Shane [26, 27, 28], Filippov [21], and Warga [33, 34, 35], among others. In some variational
and control problems (and especially in two player differential games-see for example the
discussions in [20] and the counter example of Berkovitz [16]), it has been known since the
years of L.C. Young that one must often introduce generalized or relaxed controls (also called
sliding regimes [21] or chattering controls) in order to obtain well posed optimization prob-
lems. In anticipation of treating these two player dynamical games where both the evader
and interrogator have time dependent controllers, here we use generalized controls for the
evader which thus introduces uncertainty in the evader controls as well as uncertainty in the
interrogation frequencies via the stochastic dynamics (2.1).

We remark that the use of generalized controls has arisen naturally in a number of other
modern applications including in smart materials with smoothed Preisach controls [12, 13, 14]
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where hysteretic control influence operators representing smart material actuators can be
used to guarantee well posedness as well as to develop efficient computational algorithms.

One of the main benefits of relaxed controls is that the optimal relaxed controller can be ap-
proximated by “real controls” and we shall do that here. Indeed, for computational purposes,
we will approximate the control u(t, w) with delta approximations (rigorous justification for
such approximations in the context of the Prohorov [32] or weak∗ (metric) topology on spaces
of probability distributions [4, 17, 24] can be found in [3, 4, 5] as well as in the closure the-
ories from [26, 27, 28, 33, 34, 35, 37, 38]. We restrict the set E to a finite set {ǫ∗j}M

j=1, thus
obtaining the collection of choices of materials available to the evader

U(t, ǫ) ≈
M

∑

j=1

ǫj(t)∆ǫ∗
j
(ǫ),

dU(t, ǫ) ≈
M

∑

j=1

ǫj(t)δǫ∗
j
(ǫ)dǫ,

where ǫj(t) denotes the time-dependent weighings for the material with dielectric permit-
tivity ǫ∗j that the evader may choose, and ∆ and δ are the Dirac distribution and density,
respectively. Let bj(w) = r(w, ǫ∗j), j = 1, 2, . . . ,M . Then (2.6) can be rewritten as

u(t, w) ≈
∫

E

r(w, ǫ)

M
∑

j=1

ǫj(t)δǫ∗
j
(ǫ)dǫ =

M
∑

j=1

ǫj(t)r(w, ǫ
∗

j) = b(w)ǫ(t), (2.7)

where b(w) = (b1(w), b2(w), . . . , bM(w)) and ǫ(t) = (ǫ1(t), ǫ2(t), . . . , ǫM (t))T . Thus, using the
control (2.7) we can write (2.5) as

∂̺(t, w)

∂t
+

∂

∂w
[µ(w)̺(t, w)] =

1

2

∂2

∂w2

[

σ2(w)̺(t, w)
]

− λr(̺(t, w) − b(w)ǫ(t)), (2.8)

which is a controlled forward Kolmogorov or Fokker-Planck equation [1, 22]. A reason-
able linear quadratic regulator (LQR) control problem might involve minimizing the cost
functional

J(ǭ) =

∞
∫

0

w
∫

w

|̺(t, w)|2dwdt+
∞

∫

0

β|ǭ(t)|2dt, (2.9)

subject to (2.8). Here [w,w] is the admissible range of interrogator frequencies.

2.2 Evolution of Expected Value of Intensity

We next discuss an alternative formulation for our problem. Assuming that Wt satisfies (2.1)
and for a given the material dielectric parameter value ǫt at time t, we define

ṽ(t, w) = E

[
∫ t

0

λeλsr̃(Ws, ǫs) ds+ v0(Wt) |W0 = w

]

6



where E[ · | · ] denotes the conditional expectation, r̃(w, ǫ) again represents some scalar
valued controlled intensity for the reflected signal (e.g., the magnitude of the reflection
coefficient) depending on incoming frequency w and dielectric parameter ǫ, and λ > 0 is
now a discount parameter. Following a standard technique [29, Section 10.3] for treating
integrals, we next define

Zt =

∫ t

0

λeλsr̃(Ws, ǫs) ds.

Then the process Xt = (Wt, Zt)
T satisfies

d

(

Wt

Zt

)

=

(

µ(Wt)
λeλtr̃(Wt, ǫt)

)

dt+

(

σ(Wt)
0

)

dBt

and
ṽ(t, w) = g(t, (w, 0)) for g(t, (w, z)) ≡ E[Zt + v0(Wt) | X0 = (w, z)T ].

Here the generator of the Itô diffusion process {Xt : t ≥ 0} is

Lφ(w, z) = µ(w)
∂

∂w
φ(w, z) +

1

2
σ2(w)

∂2

∂w2
φ(w, z) + λeλtr̃(w, ǫt)

∂

∂z
φ(w, z).

It then follows from Section 8.1 in [29] that g satisfies the backward Kolmogorov equation

∂

∂t
g = Lg, g(0, (w, z)) = z + v0(w). (2.10)

A discussion of the relationship between this state and the semigroup generated by L can
be found in [19]. Since g = ṽ + z is the solution to (2.10), it follows that ṽ satisfies

∂

∂t
ṽ(t, w) = µ(w)

∂

∂w
ṽ(t, w) +

1

2
σ2(w)

∂2

∂w2
ṽ(t, w) + λeλtr̃(w, ǫt),

ṽ(0, w) = v0(w).

Now let v(t, w) = e−λtṽ(t, w). It is easy to show that v satisfies

∂

∂t
v(t, w) = µ(w)

∂

∂w
v(t, w) +

1

2
σ2(w)

∂2

∂w2
v(t, w) + λ (r̃(w, ǫt) − v(t, w)) (2.11)

v(0, w) = v0(w).

We note that the state v in this formulation is

v(t, w) = E

[
∫ t

0

λe−λ(t−s)r̃(Ws, ǫs) ds+ e−λtv0(Wt) |W0 = w

]

,

the expected value of a measure of the reflected intensity.

In this formulation, the controlled reflection index r̃(w, ǫ) can be extended to generalized
controls as in (2.6), (2.7) where r = r̃. Thus we can rewrite equation (2.11) using the
generalized control from equation (2.7) as follows

∂

∂t
v(t, w) = µ(w)

∂

∂w
v(t, w) +

1

2
σ2(w)

∂2

∂w2
v(t, w) − λ (v(t, w) − b(w)ǭ(t)). (2.12)
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Note that the control for this formulation is the same as the control for the formulation in
Section 2.1 although this is a controlled backward Kolmogorov equation [1, 22]. The primary
difference is that for this latter formulation the control was naturally a part of the dynamics
equation and we did not have to artificially introduce a control into the system as we did
in Section 2.1. Thus, this second formulation is somewhat more direct and hence perhaps
more desirable from an intuitive perspective. Moreover, the backward Kolmogorov equation
of this formulation usually presents less formidable computational challenges.

2.3 Special Case

For our presentation of theoretical, approximation and computational results for the above
two control problems, we consider without loss of generality a special case where the above
problems are the same. Specifically, from (2.8) and (2.12), we see that if we choose µ ≡ 0
and σ to be a positive constant function, then (2.8) and (2.12) are reduced to the same
controlled system, a controlled diffusion equation. The choice of µ = constant > 0 is a more
physically relevant case (resulting in a convection-diffusion equation with either positive or
negative convective flow depending on which dynamics are chosen from above), but all that
we present below applies to these cases albeit with more technical detail in the theoretical and
approximation frameworks. In particular, the inclusion of the convective term can greatly
complicate the computational problem in the forward Kolmogorov formulation. Thus, for
our demonstration purposes here and for the sake of simplicity, we will consider the reduced
controlled system given by

∂v

∂t
= η

∂2v

∂w2
− λ(v − b(w)ǭ(t)) (2.13)

where η =
1

2
σ2 > 0. We further suppose that the frequencies that the interrogator is capable

of transmitting are in the range of [w,w], i.e., the support of the interrogator probability
density is finite. Then the boundary and initial conditions are given respectively by

v(t, w) = v(t, w) = 0
v(0, w) = v0(w).

(2.14)

In the context of the LQR control problem we thus must minimize the cost function

J(ǭ) =

∞
∫

0

w
∫

w

|v(t, w)|2dwdt+
∞

∫

0

β|ǭ(t)|2dt, (2.15)

subject to (2.13) and (2.14). We remark here that β is a design parameter which is chosen
to balance the relative merits of reduction of reflection intensity versus control costs in the
control objectives.
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3 Sesquilinear Forms: Theory and Numerical Approx-

imations

A fundamental framework for theory, approximation and computation for (2.15) subject to
(2.13)-(2.14) is available in the context of an abstract control problem as developed in [7, 8]
with a accessible summary given in [15]. For convenience and following standard conventions,
we use an over dot ( ˙ ) to denote the derivative with respect to the time variable t. While the
results presented below can readily be given for both general Kolmogorov formulations, for
brevity we only consider the canonical case described in the previous section where µ ≡ 0.

3.1 Sesquilinear Forms

We first present theoretical underpinnings for our control calculations in a real Hilbert space
setting. All of the results given here are summarized in more detail in [15]. Let the Hilbert
spaces H and V be defined by H = L2(w,w) and V = H1

0 (w,w). We denote the topological
dual space of V by V ∗ = H−1(w,w). If we identify H with its dual H∗ then V →֒ H =
H∗ →֒ V ∗ is a Gelfand triple [15, 36].

Define the linear operator A : V → V ∗ by

Aφ = η
∂2φ

∂w2
− λφ, φ ∈ V,

where as usual derivatives are interpreted in the weak or distributional sense. We may now
write (2.13) in the following abstract form

v̇(t) = Av(t) + Bǭ(t), v(0) = v0, (3.1)

where v(t) is used as the shorthand notation for the function v(t, ·) (this shorthand notation
will be used throughout the remainder of this section), and the operator B : R

M → V ∗ is
defined by

Bξ(w) = λb(w)ξ, for all ξ ∈ R
M .

In the particular case studied here we actually have b ∈ L2 so that B : R
M → L2 ⊂ V ∗. It

is easy to argue that the adjoint B∗ of B is given by

B∗φ = (〈b1, φ〉, 〈b2, φ〉, . . . , 〈bM , φ〉)T , for all φ ∈ V.

Using integration by parts, we obtain

〈Aφ, ψ〉V ∗,V =

w
∫

w

(

η
∂2φ(w)

∂w2
− λφ(w)

)

ψ(w)dw

= −
w

∫

w

η
∂φ(w)

∂w

∂ψ(w)

∂w
dw −

w
∫

w

λφ(w)ψ(w)dw,

9



where 〈·, ·〉V ∗,V denotes the usual duality product [15, 36]. We then define a sesquilinear
form a on V × V by a(φ, ψ) = 〈−Aφ, ψ〉V ∗,V , that is,

a(φ, ψ) =

w
∫

w

η
∂φ(w)

∂w

∂ψ(w)

∂w
dw +

w
∫

w

λφ(w)ψ(w)dw. (3.2)

We see immediately that a is symmetric, and hence the adjoint A∗ of A defined by a(φ, ψ) =
〈φ,−A∗ψ〉V,V ∗ is equal to A. Now we may rewrite (3.1) in weak form as: v(t) ∈ V for all t
is the solution of

〈v̇(t), ψ〉V ∗,V + a(v(t), ψ) = 〈Bǭ(t), ψ〉V ∗,V , v(0) = v0, (3.3)

for all ψ ∈ V . By (3.2) and Poincaré’s inequality, we find that there exists some positive
constant c such that

|a(φ, ψ)| ≤ (cλ+ η)‖φ‖V ‖ψ‖V ,

holds for any φ, ψ ∈ V . Similarly for all φ ∈ V

a(φ, φ) = η‖φ‖2
V + λ‖φ‖2

H ≥ η‖φ‖2
V .

One can then establish estimates and arguments as in [7, 8] to argue that A generates an
analytic semigroup on H , V and V ∗. Furthermore, this semigroup is exponentially stable on
H , V and V ∗.

Turning next to the control problem for the abstract dynamics (3.1), we find that the above
results along with Theorem 3.4 in [8] implies that the algebraic Riccati equation

(A∗Π + ΠA− ΠBβ−1B∗Π + I)ψ = 0 for all ψ ∈ V (3.4)

has a unique nonnegative solution Π ∈ L (V ∗, V ) and

A−Bβ−1B∗Π

generates an exponentially stable semigroup on H , V and V ∗. Moreover, the optimal feed-
back solution that minimizes cost functional (2.15) subject to (3.1) is given by

ǭopt(t) = − 1

β
B∗Πv(t).

3.2 Numerical Approximation

Our goal in this section is to present computational methods for solution of the feedback
control systems under investigation here. We do this in the context of the abstract formu-
lation developed in [7, 8, 15] and summarized above. We briefly outline a method based on

10



a standard finite element approach. For the convenience, we use (′) for the derivative with
respect to the space variable w.

We define the mesh points wN
j , j = 0 . . . N + 1 as wN

0 = w, wN
j = wN

j−1 + h for j = 1, . . .N ,

and wN
N+1 = w where h =

w − w

N + 1
. Next we let V N be a sequence of finite dimensional

subspaces of V . In particular, V N = span{lN1 (w), lN2 (w), . . . , lNN (w)} ⊂ V = H1
0 (w,w) where

the piecewise linear basis elements {lNj (w)} are defined as follows for j = 1, . . . , N :

lNj (w) =































w − wN
j−1

wN
j − wN

j−1

wN
j−1 ≤ w < wN

j

wN
j+1 − w

wN
j+1 − wN

j

wN
j ≤ w < wN

j+1

0 otherwise.

(3.5)

We next define the operator AN : V N → V N (which approximates A) by restriction of a to
V N × V N ; this yields

〈−ANφ, ψ〉 = a(φ, ψ), for all φ, ψ ∈ V N .

For given B : R
M → V ∗, we define its approximation BN : R

M → V N by

〈BNξ, ψ〉 = 〈ξ,B∗ψ〉, for all ξ ∈ R
M and ψ ∈ V N .

For this family of approximations, the corresponding Nth approximate problem in V N entails
the minimization of the cost functional

JN (ǭ) =

∞
∫

0

w
∫

w

|vN(t, w)|2dwdt+
∞

∫

0

β|ǭ(t)|2dt, (3.6)

subject to
dvN(t)

dt
= ANvN(t) + BN ǭ(t), vN(0) = PNv0. (3.7)

Here vN(t) is the notation for vN(t, ·), and the operator PN denotes the usual orthogonal
projection of H onto V N . That is, for φ ∈ H , we have PNφ ∈ V N is defined by

〈PNφ, ψ〉 = 〈φ, ψ〉, for all ψ ∈ V N . (3.8)

The weak form of (3.7), i.e., the approximate problem corresponding to (3.3), can then be
formulated as finding vN(t) ∈ V N which satisfies

〈dv
N(t)

dt
, ψ〉 + a(vN(t), ψ) = 〈BN ǭ(t), ψ〉, ψ ∈ V N , (3.9)

vN(0) = PNv0.

11



It is well-known [11] that for any φ ∈ V , there exist a sequence φN ∈ V N such that |φN −
φ|V → 0 as N → ∞. Thus we can be assured that these approximations vN(t) will approach
v(t) for N sufficiently large. To obtain the matrix representations for the operators AN and
BN in terms of the piecewise linear spline basis, we substitute

v(t) ≈ vN(t) =
N

∑

j=1

νN
j (t)lNj

into (3.9) and let ψ = lNi for i = 1, 2, . . . , N . We obtain the vector system

N
∑

j=1

ν̇N
j (t)

〈

lNj , l
N
i

〉

+ η

N
∑

j=1

νN
j (t)〈(lNj )′, (lNi )′〉 + λ

N
∑

j=1

νN
j (t)〈lNj , lNi 〉 = λ

M
∑

k=1

ǫk(t)〈bk, lNi 〉.

We note that the above equation can be written in the matrix form

FN ν̇N + ηQNνN + λFNνN = λGN ǭ, (3.10)

where νN(t) = (νN
1 (t), νN

2 (t), . . . , νN
N (t))T , FN and QN are N×N matrices with their (i, j)th

elements defined by

〈lNi , lNj 〉 =























2

3
h, if i = j

1

6
h, if |i− j| = 1

0, otherwise,

and 〈(lNi )′, (lNj )′〉 =























2

h
, if i = j

−1

h
, if |i− j| = 1

0, otherwise,

respectively, and GN is an N ×M matrix with its (i, j)th element being defined by 〈bj , lNi 〉.
Note that (3.10) can be simplified as follows

ν̇N (t) = ANνN(t) +BN ǭ(t), (3.11)

where
AN = −(FN)−1(ηQN + λFN), BN = λ

(

FN
)−1

GN ,

are the matrix representations for operators AN and BN , respectively. We consider the
approximation vN(0) to the initial condition v(0). To do this, we substitute

v(0) ≈ vN(0) = PNv0 =

N
∑

j=1

νN
0,jl

N
j

into (3.8) with φ = v0, and let ψ = lNi for i = 1, 2, . . . , N , and we find

N
∑

j=1

νN
0,j〈lNj , lNi 〉 = 〈v0, l

N
i 〉, i = 1, 2, . . . , N.

12



Let νN
0 = (νN

0,1, . . . , ν
N
0,N)T . Then from the above equation we have

νN
0 = (FN)−1













〈v0, l
N
1 〉

〈v0, l
N
2 〉

...
〈v0, l

N
N 〉













. (3.12)

We now solve (3.6) subject to (3.7) to obtain approximations to the optimal ǭopt denoted by

ǭNopt. Note that the injection from V to H is compact. Hence, by Theorem 4.8 in [8], for N

sufficiently large, there exists a unique nonnegative self-adjoint solution ΠN to the algebraic
Riccati equation in V N

(AN)∗ΠN + ΠNAN − ΠNBNβ−1(BN )∗ΠN + I = 0, (3.13)

and the convergence of the Riccati and control operators are also obtained. In addition, the
feedback system operator A−Bβ−1(BN)∗ΠN (i.e., the approximate feedback controls used in
the original infinite dimensional system) generates an exponential stable analytic semigroup
on H and for v0 ∈ H

|J(ǭNopt) − J(ǭopt)| ≤ γ(N)‖v0‖2
H ,

where ǭNopt(t) = − 1

β
(BN)∗ΠNvN(t), and γ(N) → 0 as N → ∞. In terms of matrix repre-

sentation, ǭNopt is given by

ǭNopt(t) = − 1

β
(BN)TπNνN (t),

where πN is an N ×N matrix representation of the operator ΠN given by the corresponding
matrix representation for algebraic Riccati equation (3.13), i. e.,

(AN)TπN + πNAN − πNBNβ−1(BN)TπN + I = 0.

We can easily solve for πN using the built in MATLAB function are or other available
software.

We have thus gathered all of the information needed to solve for νN . At this time recall
equation (3.11) with the optimal ǭNopt is given by

ν̇N(t) = {AN − 1

β
BN(BN )TπN}νN(t)

with initial conditions νN(0) = νN
0 defined by (3.12). We use these approximations in the

numerical results presented below.
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4 Numerical Results

In this section, a number of simulations are carried out to investigate the proposed approach
and illustrate its usefulness in exploring questions of control in a dynamic player game
study. All of the computational results presented in this section are obtained with η = 6
and λ = 1. We use the piecewise linear approximations presented in the previous section.
In the examples given here, we typically used N = 50 basis elements. The number of basis
elements used was arrived at after simulations studies to ascertain values of N required to
insure convergence.

For the intensity function r(w, ǫ) of (2.7) we used the magnitude of Fresnel reflection coeffi-

cient based on planar layer geometry [6] given by r(w, ǫ) =

∣

∣

∣

∣

a+ b

1 + ab

∣

∣

∣

∣

, where

a =
ǫ−√

ǫµ

ǫ+
√
ǫµ

and b = e4iπ
√
ǫµwd/c, (4.1)

with magnetic layer permeability µ = 1, layer thickness d = 2.5 mm and speed of light
c = 3× 108 m/sec. We chose E = {ǫ∗j}M

j=1 by taking M = 50 equal partition points ǫ∗j in the
dielectric permittivity interval 1 ≤ ǫ ≤ 1000, and interrogator frequency range [w,w] with
w = .4 GHz and w = 1 GHz.

4.1 Single Carrier Frequency Input

Our design parameter is chosen to be β = 0.25 for all the results obtained in this part. Our
first attempt for the initial condition v0 is a truncated normal (Gaussian) distribution. The
plots for the numerical approximations of vN(t, w) and the control uN(t, w) are illustrated
in Figure 1. This reveals that when the most emphasis in interrogating frequencies is placed
on frequencies around .7 GHz, that the best controls are ones corresponding to materials
effective around the frequency .7 GHz.

In the next two trials, we choose distributions concentrated at the extreme frequencies for
an initial choice for v0. Specifically, the numerical results illustrated in Figure 2 are obtained
with a truncated Gamma distribution. We see from Figure 2 that when the most emphasis
is placed on frequencies around .4 GHz, that the best controls (materials) are ones effective
around the frequency .4 GHz as well as some measure of control is exhibited at frequencies
around 1 GHz. This agrees with what was observed in [6] in that a material that nulls well
at .4 GHz also has some ability to null at 1 GHz.

Figure 3 illustrates the numerical results obtained with a truncated Beta input. From this
figure we see that when the most emphasis is placed on frequencies around 1 GHz, that the
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Figure 1: Numerical results obtained with initial condition v0 given by a truncated normal
distribution. (left): vN(t, w); (right): uN(t, w).
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Figure 2: Numerical results obtained with initial condition v0 given by a truncated Gamma
distribution. (left): vN(t, w); (right): uN(t, w).
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Figure 3: Numerical results obtained with initial condition v0 given by a truncated Beta
distribution. (left): vN(t, w); (right): uN(t, w).
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best materials to use are ones effective around the frequency 1 GHz. This illustrates what
was seen in the static examples of [6] with a material that cloaks well at 1GHz.

4.2 Multiple Carrier Frequency Inputs

In this section, the numerical results are obtained with β = 0.25. The input is chosen from
different distributions in a sequence of interrogating pulses. That is, the interrogator uses one
distribution which is unknown to the evader to sample for interrogating pulse, then switches
to choosing from a second distribution and then a third. This is done in an effort to confuse
the evader in his choice of surface permittivities. These simulations are thus a rudimentary
example of the situation where the interrogator also has a (non-feedback) time dependent
control for the input frequency distributions. We simulate this by presenting graphs of
responses to a sequence of consecutive initial condition inputs v0. As we can see from
a variety of different combinations in Figures 4-6, the computational results demonstrate
that the evader control quickly switches in time to accommodate the new choices in the
interrogator frequency distributions. This suggests some level of robustness in the evader’s
response to changing interrogator frequencies.
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Figure 4: Numerical results obtained with a sequence of consecutive initial conditions v0

given by truncated normal–truncated Gamma–truncated Beta distributions. (left): vN(t, w);
(right): uN(t, w).
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Figure 5: Numerical results obtained with a sequence of consecutive initial conditions v0 given
by truncated normal–truncated normal–truncated normal distributions. (left): vN(t, w);
(right): uN(t, w).
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Figure 6: Numerical results obtained with a sequence of consecutive initial conditions v0

given by truncated Beta–truncated Gamma–truncated Beta distributions. (left): vN(t, w);
(right): uN(t, w).

4.3 Effect of Design Parameter on the Overall Control

Finally, we consider how the choice of the design parameter β affects the overall control
effectiveness. All the numerical results in this section are obtained with a truncated normal
initial condition v0. We note from Figures 7–9 as β increases (i.e., the control gain decreases)
the feedback control action is less effective and rapid.
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Figure 7: Numerical results obtained with β = 2.5×10−4. (left): vN(t, w); (right): uN(t, w).
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Figure 8: Numerical results obtained with β = 0.25. (left): vN(t, w); (right): uN(t, w).
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Figure 9: Numerical results obtained with β = 25000. (left): vN(t, w); (right): uN(t, w).
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5 Conclusion and Future Research Efforts

In this paper, we consider a dynamic evasion-interrogation games with uncertainty in the
context of electromagnetics. Two different formulations are considered: one is based on the
probability density function of the intensity of the reflected signal, and the other is based on
the expected value of the intensity of the reflected signal. We should note that we anticipate
that the ideas presented here can be readily implemented in a number of other modern
non-cooperative adversarial situations such as information warfare and network security.

There are several efforts we plan to pursue in the near future. One is to extend the ideas in
this paper to include a stochastic process for the evader to obtain a true two player min-max
dynamic differential game for the evader-interrogator problem. The other efforts include
investigation of other means to introduce uncertainty in the dynamic two player games.
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